Cilia/Ift protein and motor -related bone diseases and mouse models.
نویسندگان
چکیده
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
منابع مشابه
Primary Cilia Are Not Required for Normal Canonical Wnt Signaling in the Mouse Embryo
BACKGROUND Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt p...
متن کاملIntraflagellar transport: from molecular characterisation to mechanism.
Research from a wide range of model systems such as Chlamydomonas, C. elegans and mice have shown that intraflagellar transport (IFT) is a bidirectional motility of large protein complexes along cilia and flagella that is essential for building and maintaining these organelles. Since its discovery in 1993, much progress has been made in uncovering the molecular and functional basis of IFT. Pres...
متن کاملCharacterization of Tetratricopeptide Repeat-Containing Proteins Critical for Cilia Formation and Function
Cilia formation and function require a special set of trafficking machinery termed intraflagellar transport (IFT), consisting mainly of protein complexes IFT-A, IFT-B, BBSome, and microtubule-dependent molecular motors. Tetratricopeptide repeat-containing (TTC) proteins are widely involved in protein complex formation. Nine of them are known to serve as components of the IFT or BBSome complexes...
متن کاملAn IFT-A Protein Is Required to Delimit Functionally Distinct Zones in Mechanosensory Cilia
BACKGROUND Conserved intraflagellar transport (IFT) particle proteins and IFT-associated motors are needed to assemble most eukaryotic cilia and flagella. Proteins in an IFT-A subcomplex are generally required for dynein-driven retrograde IFT, from the ciliary tip to the base. We describe novel structural and functional roles for IFT-A proteins in chordotonal organs, insect mechanosensory organ...
متن کاملKinesin motors and primary cilia.
Cilia and flagella play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in ciliary assembly and/or function can lead to a range of human diseases, collectively known as the ciliopathies, including polycystic kidney, liver and pancreatic diseases, sterility, obesity, situs inversus, hydrocephalus and retinal de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in bioscience
دوره 20 شماره
صفحات -
تاریخ انتشار 2015